304 research outputs found

    The Role of Exercise-Induced Myokines in Muscle Homeostasis and the Defense against Chronic Diseases

    Get PDF
    Chronic inflammation is involved in the pathogenesis of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. Regular exercise offers protection against type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, and dementia. Evidence suggests that the protective effect of exercise may to some extent be ascribed to the antiinflammatory effect of regular exercise. Here we suggest that exercise may exert its anti-inflammatory effect via a reduction in visceral fat mass and/or by induction of an anti-inflammatory environment with each bout of exercise. According to our theory, such effects may in part be mediated via muscle-derived peptides, so-called “myokines”. Contracting skeletal muscles release myokines with endocrine effects, mediating direct anti-inflammatory effects, and/or specific effects on visceral fat. Other myokines work locally within the muscle and exert their effects on signalling pathways involved in fat oxidation and glucose uptake. By mediating anti-inflammatory effects in the muscle itself, myokines may also counteract TNF-driven insulin resistance. In conclusion, exercise-induced myokines appear to be involved in mediating both systemic as well as local anti-inflammatory effects

    Exercise-Mediated Lowering of Glutamine Availability Suppresses Tumor Growth and Attenuates Muscle Wasting

    Get PDF
    Glutamine is a central nutrient for many cancers, contributing to the generation of building blocks and energy-promoting signaling necessary for neoplastic proliferation. In this study, we hypothesized that lowering systemic glutamine levels by exercise may starve tumors, thereby contributing to the inhibitory effect of exercise on tumor growth. We demonstrate that limiting glutamine availability, either pharmacologically or physiologically by voluntary wheel running, significantly attenuated the growth of two syngeneic murine tumor models of breast cancer and lung cancer, respectively, and decreased markers of atrophic signaling in muscles from tumor-bearing mice. In continuation, wheel running completely abolished tumor-induced loss of weight and lean body mass, independently of the effect of wheel running on tumor growth. Moreover, wheel running abolished tumor-induced upregulation of muscular glutamine transporters and myostatin signaling. In conclusion, our data suggest that voluntary wheel running preserves muscle mass by counteracting muscular glutamine release and tumor-induced atrophic signaling

    Female sex hormones are necessary for the metabolic effects mediated by loss of Interleukin 18 signaling

    Get PDF
    Objective: Interleukin (IL)-18 plays a crucial role in maintaining metabolic homeostasis and levels of this cytokine are influenced by gender, age, and sex hormones. The role of gender on IL-18 signaling, however, is unclear. We hypothesized that the presence of female sex hormone could preserve the metabolic phenotype of the IL-18R−/− animals. Methods: We studied female mice with a global deletion of the α isoform of the IL-18 receptor (IL-18R−/−) and littermates control. Three studies were done: 1) animals fed a high fat diet (HFD) for 16 weeks; 2) animals fed chow diet for 72 weeks and 3) animals (3 weeks-old) randomized to either bilateral ovariectomy (OVX) or control surgery (SHAM) and followed for 16 weeks. Results: Female IL-18R−/− mice gained less weight and maintained glucose homeostasis on a chow diet compared with HFD, but no differences between genotypes were observed. The maintenance of body weight and glucose homeostasis in IL-18R−/− mice was lost with aging. By 72 weeks of age, IL-18R−/− mice became heavier compared with WT mice due to an increase in both visceral and subcutaneous adiposity and displayed glucose intolerance. OVX did not affect body weight in IL-18R−/− mice but exacerbated glucose intolerance and impaired liver insulin signaling when compared with SHAM mice. Conclusions: Female mice harboring a global deletion of the IL-18R, only present the same phenotype as reported in male IL-18R−/− mice if they are aged or have undergone OVX, in which circulating estrogen is likely to be blunted. The role of estrogen signaling in the protection against altered metabolic homeostasis in IL-18R−/− mice appears to be mediated by liver insulin signaling. We therefore suggest that the metabolic effects mediated by loss of IL-18 signaling are only present in a female sex hormone free environment. Keywords: IL-18, Obesity, Insulin resistance, Gende

    Metabolic profile in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives

    Get PDF
    Abstract Objective The prevalence of metabolic syndrome and insulin resistance is twice as high in patients with bipolar disorder compared with the general population, and possibly associated with a disabling illness trajectory of bipolar disorder, an increased risk of cardiovascular disease and premature death. Despite these detrimental effects, the prevalence of metabolic syndrome and insulin resistance in patients newly diagnosed with bipolar disorder and their unaffected first-degree relatives is largely unknown. Methods In a cross-sectional study of 206 patients with newly diagnosed bipolar disorder, 50 of their unaffected first-degree relatives and 109 healthy age- and sex-matched individuals, we compared the prevalence of metabolic syndrome and insulin resistance (HOMA-IR). In patients with bipolar disorder, we further investigated illness and medication variables associated with the metabolic syndrome and insulin resistance. Results Higher rates of metabolic syndrome (odds ratio = 3.529, 95% CI 1.378–9.041, P = 0.009) and levels of insulin resistance (B = 1.203, 95% CI 1.059–1.367, P = 0.005) were found in patients newly diagnosed with bipolar disorder, but not in their unaffected first-degree relatives compared with matched healthy individuals (data adjusted for sex and age). Most patients with bipolar disorder (94.7%) were diagnosed within the preceding 2 years, and the average illness duration, defined as time from first mood episode, was 10 years. Conclusion Our findings of elevated prevalence of metabolic syndrome and insulin resistance in patients with newly diagnosed bipolar disorder highlight the importance of screening for these conditions at an early stage to employ adequate and early care reducing the risk of cardiovascular disease and premature death

    Dysregulation of a novel miR-23b/27b-p53 axis impairs muscle stem cell differentiation of humans with type 2 diabetes

    Get PDF
    Objective: MicroRNAs (miRNAs) are increasingly recognized as fine-tuning regulators of metabolism, and are dysregulated in several disease conditions. With their capacity to rapidly change gene expression, miRNAs are also important regulators of development and cell differentiation. In the current study, we describe an impaired myogenic capacity of muscle stem cells isolated from humans with type 2 diabetes (T2DM) and assess whether this phenotype is regulated by miRNAs. Methods: We measured global miRNA expression during in vitro differentiation of muscle stem cells derived from T2DM patients and healthy controls. Results: The mir-23b/27b cluster was downregulated in the cells of the patients, and a pro-myogenic effect of these miRNAs was mediated through the p53 pathway, which was concordantly dysregulated in the muscle cells derived from humans with T2DM. Conclusions: Our results indicate that we have identified a novel pathway for coordination of myogenesis, the miR-23b/27b-p53 axis that, when dysregulated, potentially contributes to a sustained muscular dysfunction in T2DM

    Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes

    Get PDF
    Skeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers. We profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes. The muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation. We provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions

    Obesity and Low-Grade Inflammation Increase Plasma Follistatin-Like 3 in Humans

    Get PDF
    Background. Rodent models suggest that follistatin-like 3 (fstl3) is associated with diabetes and obesity. In humans, plasma fstl3 is reduced with gestational diabetes. In vitro, TNF-induces fstl3 secretion, which suggests a link to inflammation. Objective. To elucidate the association between plasma fstl3 and obesity, insulin resistance, and low-grade inflammation in humans. Study Design. Plasma fstl3 levels were determined in a cross-sectional study including three groups: patients with type 2 diabetes, impaired glucose tolerance, and healthy controls. In addition, lipopolysaccharide (LPS), TNF-, or interleukin-6 (IL-6) as well as a hyperinsulinemic euglycemic clamp were used to examine if plasma fstl3 was acutely regulated in humans. Results. Plasma fstl3 was increased in obese subjects independent of glycemic state. Moreover, plasma fstl3 was positively correlated with fat mass, plasma leptin, fasting insulin, and HOMA B and negatively with HOMA S. Furthermore plasma fstl3 correlated positively with plasma TNF-and IL-6 levels. Infusion of LPS and TNF-, but not IL-6 and insulin, increased plasma fstl3 in humans. Conclusion. Plasma fstl3 is increased in obese subjects and associated with fat mass and low-grade inflammation. Furthermore, TNF-increased plasma fstl3, suggesting that TNF-is one of the inflammatory drivers of increased systemic levels of fstl3
    corecore